Friday 20 November 2015

FUNGSI DAN PERAN AIR BAGI KEHIDUPAN

Salah satu kebutuhan pokok sehari-hari makhluk hidup di dunia ini yang tidak dapat terpisahkan adalah Air. Tidak hanya penting bagi manusia Air merupakan bagian yang penting bagi makhluk hidup baik hewan dan tubuhan. Tanpa air kemungkinan tidak ada kehidupan di dunia inti karena semua makhluk hidup sangat memerlukan air untuk bertahan hidup.
Manusia mungkin dapat hidup beberapa hari akan tetapi manusia tidak akan bertahan selama beberapa hari jika tidak minum karena  sudah mutlak bahwa sebagian besar zat pembentuk tubuh manusia itu terdiri dari 73% adalah air.
Jadi bukan hal yang baru jika kehidupan yang ada di dunia ini dapat terus berlangsung karen tersedianya Air yang cukup.
Dalam usaha mempertahankan kelangsungan hidupnya, manusia berupaya mengadakan air yang cukup bagi dirinya sendiri.
Berikut ini air merupakan kebutuhan pokok bagi manusia dengan segala macam kegiatannya, antara lain digunakan untuk:
  • keperluan rumah tangga, misalnya untuk minum, masak, mandi, cuci dan pekerjaan lainnya,
  • keperluan umum, misalnya untuk kebersihan jalan dan pasar, pengangkutan air limbah, hiasan kota, tempat rekreasi dan lain-lainnya.
  • keperluan industri, misalnya untuk pabrik dan bangunan pembangkit tenaga listrik.
  • keperluan perdagangan, misalnya untuk hotel, restoran, dll.
  • keperluan pertanian dan peternakan
  • keperluan pelayaran dan lain sebagainya
Oleh karena itulah air sangat berfungsi dan berperan bagi kehidupan makhluk hidup di bumi ini. Penting bagi kita sebagai manusia untuk tetap selalu melestarikan dan menjaga agar air yang kita gunakan tetap terjaga kelestariannya dengan melakukan pengelolaan air yang baik seperti penghematan, tidak membuang sampah dan limbah yang dapat membuat pencemaran air sehingga dapat menggangu ekosistem yang ada.

Baca juga artikel lingkungan di sini:

  • Manfaat Air bagi Kehidupan Manusia
    Air merupakan zat yang paling penting dalam kehidupan setelah udara. Sekitar tiga per empat bagian dari tubuh kita terdiri dari air dan tidak seorangpun dapat bertahan hidup lebih dari 4-5 hari tanpa ...
  • 8 Manfaat sumber daya air
    Seluruh makhluk hidup di muka bumi membutuhkan air. Sejak aal kehidupan, mahluk hidup terutama manusia telah memanfaatkan air untuk kelangsungan hidupnya, bahkan mutlak dibutuhkan manusia. Seiring den...

Kata Kunci Terkait:

fungsi airmanfaat air bagi kehidupanmanfaat air bagi manusiakegunaan airfungsi air bagi kehidupan,fungsi air bagi manusiaartikel tentang airmanfaat air bagi kehidupan manusiafungsi air bagi makhluk hidupperanan air bagi kehidupan




Wednesday 19 November 2014

MINERAL

Mineral diketahui sebagai bahan / unsur / zat yang bermanfaat bagi tubuh. Makanan yang bergizi pasti harus mengandung mineral, seperti zinc, zat besi, zat kapur, kalsium dan lain lain. Air mineral, disebut demikian, karena di dalam air kemasan tersebut sudah mengandung mineral yang amat diperlukan oleh tubuh, untuk membedakan dengan air biasa yang dimasak di rumah.
Sebenarnya, apakah mineral itu?
Menurut artikel wikipedia, mineral adalah,
…….. senyawa alami yang terbentuk melalui proses geologis. Istilah mineral termasuk tidak hanya bahan komposisi kimia tetapi juga struktur mineral. Mineral termasuk dalam komposisi unsur murni dan garam sederhana sampai silikat yang sangat kompleks dengan ribuan bentuk yang diketahui (senyawaan organik biasanya tidak termasuk). Ilmu yang mempelajari mineral disebut mineralogi.
Agar dapat diklasifikasikan sebagai mineral sejati, senyawa tersebut haruslah berupa padatan dan memiliki struktur kristal. Senyawa ini juga harus terbentuk secara alami dan memiliki komposisi kimia yang tertentu. Definisi sebelumnya tidak memasukkan senyawa seperti mineral yang berasal dari turunan senyawa organik. Bagaimanapun juga, The International Mineralogical Association tahun 1995 telah mengajukan definisi baru tentang definisi material:
Mineral adalah suatu unsur atau senyawa yang dalam keadaan normalnya memiliki unsur kristal dan terbentuk dari hasil proses geologi.
Klasifikasi modern telah mengikutsertakan kelas organik kedalam daftar mineral, seperti skema klasifikasi yang diajukan oleh Dana dan Strunz. (Sumber http://id.wikipedia.org/wiki/Mineral ).
Mineral, berasal dari kata mine, di dalam bahasa Inggris yang berarti ‘tambang’, ‘pertambangan’. Kemudian, miner, berarti ‘penambang’, ‘petambang’, alias orang yang bekerja di pertambangan. Dan akhirnya, diberi akhiran ‘al’, maka jadilah kata mineral.
Definisi mineral adalah bahan-bahan atau zat-zat, baik ia bermanfaat bagi tubuh masalah mau pun yang berbahaya, yang pada awalnya zat tersebut dikenal melalui atau sebagai hasil pertambangan – yang digali dari perut bumi.
Itulah sebabnya, di dalam makanan kita dikenal gizi yang disebut zat besi. Apakah manusia sebenarnya makan besi? Tentu saja tidak. Manusia mana yang kuat makan besi? Namun dikatakan zat besi karena kandungan tersebut pertama kali dikenal sebagai barang tambang. Demikian juga dengan zinc alias seng. Seng kita kenal sebagai logam yang biasanya wujud di dalam bentuk atap seng yang diletakkan di atas rumah, mau pun sebagai dinding pembatas ruang sementara. Namun apakah itu berarti kita makan seng? Zinc sangat bermanfaat bagi tubuh kita. Dan unsur-unsur kimia yang membentuk zinc tersebut, adalah unsur-unsur yang membentuk seng, hanya saja kadarnya jauuuuuuuuuuh berbeda.
Nah, kalau zat kapur yang harus ada di dalam menu makanan? Apakah Anda pernah makan kapur yang biasa digunakan pak dan buK dosen atau pak dan buk guru mengajar di ruang kelas sewaktu kita masih menggunakan kapur tulis ?
Mineral adalah padatan senyawa kimia homogen, non-organik, yang memiliki bentuk teratur (sistem kristal) dan terbentuk secara alami. Istilah mineral termasuk tidak hanya bahan komposisi kimia tetapi juga struktur mineral. Mineral termasuk dalam komposisi unsur murni dan garam sederhana sampai silikat yang sangat kompleks dengan ribuan bentuk yang diketahui (senyawaan organik biasanya tidak termasuk). Ilmu yang mempelajari mineral disebut mineralogi. Foto dari US Geological Survey
Klasifikasi dan definisi mineral
Agar dapat diklasifikasikan sebagai mineral sejati, senyawa tersebut haruslah berupa padatan dan memiliki struktur kristal. Senyawa ini juga harus terbentuk secara alami dan memiliki komposisi kimia yang tertentu. Definisi sebelumnya tidak memasukkan senyawa seperti mineral yang berasal dari turunan senyawa organik. Bagaimanapun juga, The International Mineralogical Association tahun 1995 telah mengajukan definisi baru tentang definisi material:
Mineral adalah suatu unsur atau senyawa yang dalam keadaan normalnya memiliki unsur kristal dan terbentuk dari hasil proses geologi.[1]
Klasifikasi modern telah mengikutsertakan kelas organik kedalam daftar mineral, seperti skema klasifikasi yang diajukan oleh Dana dan Strunz.[2][3] Mineral adalah suatu zat yang terdapat dalam alam dengan komposisi kimia yang khas dan biasanya mempunyai struktur kristal yang jelas, yang kadang-kadang dapat menjelma dalam bentuk geometris tertentu. Istilah mineral dapat mempunyai bermacam-macam makna; sukar untuk mendefinisikan mineral dan oleh karena itu kebanyakan orang mengatakan, bahwa mineral ialah satu frasa yang terdapat dalam alam. Sebagaimana kita ketahui ada mineral yang berbentuk :
Lempeng Tiang Limas Kubus
Batu permata merupakan campuran dari unsur-unsur mineral. Setiap mineral yang dapat membesar tanpa gangguan akan memperkembangkan bentuk kristalnya yang khas, yaitu suatu wajah lahiriah yang dihasilkan struktur kristalen (bentuk kristal). Ada mineral dalam keadaan amorf, yang artinya tak mempunyai bangunan dan susunan kristal sendiri (mis kaca & opal). Tiap-tiap pengkristalan akan makin bagus hasilnya jika berlangsungnya proses itu makin tenang dan lambat.
Daftar isi
1 Kristal 2 Gores 3 Belahan 4 Warna 5 Berat Jenis (BD) 6 Nama-nama batu permata, kristal, dan mineral terkenal 7 Nama-nama Batu Permata berdasarkan urutan Kekerasan menurut Skala Mohs 8 Lihat pula
Kristal
Kristal adalah sebuah benda yang homogen, berbentuk sangat geometris dan atom-atomnya tersusun dalam sebuah kisi-kisi kristal,karena bangunan kisi-kisi kristal tersebut berbeda-beda maka sifatnya juga berlainan. Kristal dapat terbentuk dalam alam (mineral) atau di laboratorium.
Kristal artinya mempunyai bentuk yang agak setangkup (simetris) dan yang pada banyak sisinya terbatas oleh bidang datar, sehingga memberi bangin yang tersendiri sifatnya kepada mineral yang bersangkutan.
Benda padat yang terdiri dari atom-atom yang tersusun rapi dikatakan mempunyai struktur kristalen. Dalam suasana yang baik benda kristalen dapat mempunyai batas bidang rata-rata & benda itu dinamakan kristal (hablur) & bidang rata itu disebut muka kristal.
Ada 32 macam gelas kristal yang dipersatukan dalam 6 sistem kristal, yaitu:
REGULER, Kubus atau ISOMETRIK ketiga poros sama panjang dan berpotongan tegak lurus satu sama lain (contoh : intan, pirit, garam batu) TETRAGONAL (berbintang empat) ketiga poros tegak lurus satu sama lain, dua poros sama panjang sedangkan poros ketiga berbeda (contoh chalkopirit, rutil, zircon). HEKSAGONAL (berbintang enam) Hablur ini mempunyai empat poros, tiga poros sama panjang dan terletak dalam satu bidang, bersilangdengan sudut 120 derajat (60 derajat), tetapi poros ke-empat tegak lurus atas bidang itu dan panjangnya berbeda (contoh apalit, beryl, korundum). ORTOROMBIS (irisan wajik) ketiga poros tidak sama panjang du poros berpotongan siku-siku dan poros ketiga memotong miring bidang kedua poros tadi (berit, belerang, topaz) MONOKLIN (miring sebelah) ketiga poros tidak sama panjang, dua dari porosnya berpotongan sorong & poros ketiga tegak lurus atas kedua poros tadi (gips, muskovit, augit) TRIKLIN (miring, ketiga arah) ketiga poros tidak sama panjang dan berpotongan serong satu sama lain(albit, anortit, distin)
Bentuk kristal dibagi dalam 6 tata hablur yang didasarkan:
perbandingan panjang poros – poros hablur besarnya sudut persilangan poros – poros hablur
Gores
Kristal / mineral yang mempunyai kekerasan < 7 jika digosokkan pada lempengan porselin yang kasar biasanya meninggalkan di tempat penggosokan tersebut suatu garis yang karakteristik dan seringkali berwarna lain dari mineral itu sendiri.
Pirit yang warnanya kuning emas meninggalkan garis hitam. Hematit (Fe2O3) yang berkilap kelogam-logaman atau memberi garis merah darah Fluisvat memberikan garis putih (mineral yang berwarna terang tetapi memberi garis putih)
Belahan
Belahan adalah kecenderungan batu permata untuk membelah ke arah tertentu menyusur permukaan bidang rata, lebih spesifik lagi ia menunjukkan ke arah mana ikatan-ikatan di antara atom relative lemah dan biasanya reta-retak menunjukan arah belah.
Belahan ialah sifat untuk menjadi belah menurut bidang yang agak sama licinnya
belahan baik sekali baik sedang buruk tidak ada belahan sama sekali
Warna
Warna dapat dilihat ketika terjadi beberapa proses pemindahan panjang gelombang, beberapa menyerap panjang gelombang spesifik dari spektrum yang dapat dilihat. Spektrum yang dapat dilihat terdiri dari warna merah, oranye, kuning, hijau, biru, nila dan violet.
Ketika terjadi pemindahan panjang gelombang akan memengaruhi energi dan akan terjadi perubahan warna dan jika permata itu mengandung besi biasanya akan terlihat berwarna kelam, sedangkan yang mengandung alumunium biasanya terlihat berwarna cerah, tetapi juga ada mineral yang berwarna tetap seperti air (berkristal) dan dinamakan Idhiochromatic
Di sini warna merupakan sifat pembawaan disebabkan karena ada sesuatu zat dalam permata sebagai biang warna (pigment agent) yang merupakan mineral-mineral yaitu : belerang warnanya kuning; malakit warnanya hijau; azurite warnanya biru; pirit warnanya kuning; magatit warnanya hitam; augit warnanya hijau; gutit warnanya kuning hingga coklat; hematite warnanya merah dsbnya.
Ada juga mineral yang mempunyai warna bermacam-macam dan diistilahkan allokhromatik, hal ini disebabkan kehadiran zat warna (pigmen), terkurungnya sesuatu benda (inclusion) atau kehadiran zat campuran (Impurities). Impurities adalah unsur-unsur yang antara lain terdiri dari Ti, V, Cr, Mn, Fe, Co, Ni, Cu, dan biasanya tidak hadir dalam campuran murni, unsur-unsur yang terkonsentrasi dalam batu permata rendah.
Aneka warna batu permata ini sangat mempersona manusia sehingga manusia memberi gelar “mulia” pada batu-batu itu, contoh intan yang hanya terdiri dari satu unsur mineral yakni zat arang merupakan benda yang padat yang bersisi delapan karena adanya zat campuran yang berbeda akan menyebabkan warna yang berbeda : tidak berwarna, kuning, kuning muda, agak kebiru-biruan, merah, biru agak hijau, merah jambu, merah muda, agak kuning coklat, hitam yang dinamakan carbonado, hijau daun.
Banyak mineral hanya memperlihatkam warna yang terang pada bagian-bagian yang tipis sekali. Mineral yang lebih besar dan tebal selalu memberi kesan yang hitam, tanda demikian antara lain diperlihatkan oleh banyak mineral.
Warna hijau muda; jika warna tersebut makin tua berarti makin bertambah Kadar Fe di dalam molekulnya. Berat Jenis (BD)
Untuk mengetahui mineral yang belum diketahui BD-nya dipakai alat yang disebut cairan berat :
Pertama : Bromoform (ChBr) Kedua : Joodmethylin (Ch2 J2) Ketiga : Cclerici yaitu larutan Thallium malonat formiat
Mineral dengan BD < 2,68 mineral ringan
kwarsa: 2,57 albit: 2,62 oligoklas: 2,64
Mineral dengan BD > 2,68 mineral berat
Labradorit: 2,70 Anortit: 2,76 Augit hornblende: 3,20 Maskotit: 2,90 Biotitit: 3,00 Korundum: 3,20 Turmalin
Mineral dengan BD 3,3 – 4 mineral amat berat
olifin starolit granat / garnet
Mineral dengan BD > 4 dan kekerasan = 7
Zirkon
BD = 2,65 Mineral tergolong dalam fraksi enteng dan bias rangkapnya tergolong rendah yaitu terdiri dari
Kuarsa kristalen; bergkristal (tidak berwarna); amathis atau kecubung opal = sebetulnya gel asam kersik chalsedon; jenis kristalnya jenis kripto (kwarsa kripto kristalen); k = 7; struktur kristalnya baru tampak jika dilihat dengan menggunakan mikroskop. agat; jenis kristalnya jenis kripto (kwarsa kripto kristalen) = k = 7; struktur kristalnya baru tampak jika dilihat dengan menggunakan mikroskop Oniks, jenis kristalnya jenis kripto (kwarsa kripto kristalen) = k = 7; struktur kristalnya baru tampak jika dilihat dengan menggunakan mikroskop jaspis besi kersik opal tanggung (half opal) = sifat membelah tidak ada pecahannya berupa kerang.
BD = 2,9 – 3,3
Nefrit = Jade = Giok {Ca2 (Mg, Fe)5 (OH)2Si8O22} aktinolit atau Amfibol kalsium magnesium besi; bentuk menyerabut atau asbes tiform; warna kelabu, kehijau-hijauan atau kekuning-kuningan; adanya garis kembar; warna plagioklas putih, kadang – kadang kehijau-hijauan, hijau tua, coklat, hitam, kadang-kadang tembus pandang (transparan), tembus cahaya (Translucent) atau opal; bidang belah berpotongan dengan sudut 550 dan 1250 ; K = 5 – 6; apabila dipanaskan mengeluarkan air yang menunjukkan bahwa ia terbentuk dalam suasana hidro (perhatikan adanya gugusan OH) atau dikenal sebagai AMFIBOL.
BD = 3,3 – 3,6
Epidot ( H2 M4 “M6”’ Si6O26, M”); dari batu-batuan endapan atau sedimen yang lebih tua; k = 6,5; Hijau- hijau kekuning-kuningan, terdapat jenis yang berwarna merah; belahan baik; mengristal monoklin, prisma; bias cahaya dan bias rangkap kuat.
BD = 3,5 – 5,3
Granat/Garnet (M3” M2”’ SiO3O12); dari batuan sedimen tua; kristal reguler; bias cahaya keras, tidak berbias rangkap (Isotrop); K = 7; belahan baik; warna merah, merah coklat, kuning dan hijau jarang, tidak berwarna sama sekali.
BD = 4
Korundum (Al2O3) tersusun sangat padat; tak berwarna –bermacam-macam warna; K = 9; Oktahedron/Hexagonal; Bias tinggi; Bias rangkapnya rendah. (3,9 – 4,1) Spinel (M” = Mg, Zr, Fe; M”’ = Cr, Al, Mn); hijau tua; K = 7,5 – 8; Biasnya tinggi, Mengkristal secara reguler; bersifat isotrop dalam optiknya; belahannya seringkali buruk
BD = 4,2
Ortit termasuk golongan Epidot hanya dalam persenyawaannya berbeda disebabkan kadar Ce yang tinggi; K= 5,6; merah coklat, coklat merah tua – kuning atau coklat kuning; kristal gemuk seperti prisma; Turmalin {H9Al3(B.OH)2Si4O19}; K= 7; Heksagonal, belahan buruk, Bias sedang; Pleokroisnya sangat kuat; jernis seperti air, Coklat biru sampai hitam, turmalin biru agak jarang diketemukan.
Tiap-tiap batu permata yang sudah dikenal berat jenisnya dapat diketahui nilai keras batu, dari berat batu dapatlah dihitung karat dari permata tersebut. Karat adalah satuan berat yang setimbang dengan seperlima gram. Satuan ini disebut karat metrik.
Jika kita timbang berat intan, tidak dikatakan berat intan 1 gram tetapi berat intan adalah 5 karat, demikian yang lain batu rubi beratnya 17,8 karat, batu sapphire 7 karat dsbnya. Nama-nama batu permata, kristal, dan mineral terkenal Halaman ini belum atau baru diterjemahkan sebagian dari bahasa Inggris. Bantulah Wikipedia untuk melanjutkannya. Lihat panduan penerjemahan Wikipedia.
Dalam bahasa Inggris dengan bahasa Indonesia di dalam kurung, berdasarkan urutan abjad:
Agate Amazonite Amber Ametrine Ammolite Andalusite Apatite Aquamarine ( Beryl ) Axinite Aventurine
Benitoite Beryl
Bixbite ( Beryl ) Bloodstone / Akik darah Bone
Cat's eye Carnelian Cassiterite Chalcedony Charoite Chrysoberyl (mata kucing): Alexandrite Chrysocolla Chrysolite (krisolit) Chrysoprase Coral Cordierite Cubic Zirconia
Danburite Diamonds / Berlian / Intan Dinososaur Bone Diopsite Dolomite Drusy
Euclase
Enstatie
Fluorite Fosfor
Permata Garnet (Batu delima, mata kucing): Rhodolite
Heliodore (Beryl) Hematite
Iolite
Kunzite
Idocrase Jadeite/giok
Labradorite: Spectrolite Permata Lapis Lazuli Larimar
Malachite (malakit) Matlockit Montana Agate Moonstone (batu biduri bulan, biduri laut) Morgan Hill
Nephrite/nefrit (jade)
Olivine Orthoclase
Opal (kalimaya)
Padparadscha Phenakite Pyrope
Palmwood Pearl / Mutiara Pectolitej Peridot Pyrite
Quarz
Kristal Quartz (Kuarsa): termasuk di dalamnya Aventurine, Carnelian, Citrine, Kristal Agate (akik) Kristal Amethyst (kecubung) Kristal Chalcedony Onyx (batu krisopras) Permata Jasper
Rhodonite Ruby Rutile
Rubicelle (spinel) Permata Ruby (Batu merah delima / mirah delima / mirah, Batu nilem, yaspis merah, akik merah, rubi)
Scapolite (yellow) Sphene Spodumene Strontium titanate
Kristal Sapphire (Batu nilam, lazurit, safir) Spinel Permata Sunstone Sugilite
Tanzanite Permata Tiger’S Eye (mata kucing) Kristal Topaz (Batu cempaka, topas, yakut kuning) Kristal Tourmaline: Rubelite (merah), Dravite (kuning), Verdelite (hijau), Indicolite (biru) Turquoise (Batu yakut biru, pirus) Violan
Yag Zircon Zoisite
Nama-nama Batu Permata berdasarkan urutan Kekerasan menurut Skala Mohs

VITAMIN

Vitamin (bahasa Inggris: vital amine, vitamin) adalah sekelompok senyawa organik berbobot molekul kecil yang memiliki fungsi vital dalam metabolisme setiap organisme,[1] yang tidak dapat dihasilkan oleh tubuh.
Nama ini berasal dari gabungan kata bahasa Latin vita yang artinya "hidup" dan amina (amine) yang mengacu pada suatu gugus organik yang memiliki atom nitrogen (N), karena pada awalnya vitamin dianggap demikian.[2] Kelak diketahui bahwa banyak vitamin yang sama sekali tidak memiliki atom N. Dipandang dari sisi enzimologi (ilmu tentang enzim), vitamin adalah kofaktor dalam reaksi kimia yang dikatalisasi oleh enzim. Pada dasarnya, senyawa vitamin ini digunakan tubuh untuk dapat bertumbuh dan berkembang secara normal.[3]
Terdapat 13 jenis vitamin yang dibutuhkan oleh tubuh untuk dapat bertumbuh dan berkembang dengan baik. Vitamin tersebut antara lain vitamin A, C, D, E, K, dan B (tiamin, riboflavin, niasin, asam pantotenat, biotin, vitamin B6, vitamin B12, dan folat).[3] Walau memiliki peranan yang sangat penting, tubuh hanya dapat memproduksi vitamin D dan vitamin K dalam bentuk provitamin yang tidak aktif. Sumber berbagai vitamin ini dapat berasal dari makanan, seperti buah-buahan, sayuran, dan suplemen makanan.[3]
Vitamin memiliki peranan spesifik di dalam tubuh dan dapat pula memberikan manfaat kesehatan. Bila kadar senyawa ini tidak mencukupi, tubuh dapat mengalami suatu penyakit.[3] Tubuh hanya memerlukan vitamin dalam jumlah sedikit, tetapi jika kebutuhan ini diabaikan maka metabolisme di dalam tubuh kita akan terganggu karena fungsinya tidak dapat digantikan oleh senyawa lain.[2] Gangguan kesehatan ini dikenal dengan istilah avitaminosis.[4] Contohnya adalah bila kita kekurangan vitamin A maka kita akan mengalami kerabunan. Di samping itu, asupan vitamin juga tidak boleh berlebihan karena dapat menyebabkan gangguan metabolisme pada tubuh.[5]
Sejarah
Vitamin merupakan suatu senyawa yang telah lama dikenal oleh peradaban manusia. Sudah sejak ribuan tahun lalu, manusia telah mengenal vitamin sebagai salah satu senyawa yang dapat memberikan efek kesehatan bagi tubuh. Seiring dengan berkembangnya zaman dan ilmu pengetahuan, berbagai hal dan penelusuran lebih mendalam mengenai vitamin pun turut diperbaharui. Garis besar sejarah vitamin dapat dibagi menjadi 5 era penting.[6] Disetiap era tersebut, terjadi suatu kemajuan besar terhadap senyawa vitamin ini yang diakibatkan oleh adanya kemajuan teknologi dan ilmu pengetahuan.
Era penyembuhan empiris
Era pertama dimulai pada sekitar tahun 1500-1570 sebelum masehi.[6] Pada masa itu, banyak ahli pengobatan dari berbagai bangsa, seperti Mesir, Cina, Jepang, Yunani, Roma, Persia, dan Arab, telah menggunakan ekstrak senyawa (diduga vitamin) dari hati yang kemudian digunakan untuk menyembuhkan penyakit kerabunan pada malam hari. Penyakit ini kemudian diketahui disebabkan oleh defisiensi vitamin A.[2] Walau pada masa tersebut ekstrak hati tersebut banyak digunakan, para ahli pengobatan masih belum dapat mengidentifikasi senyawa yang dapat menyembuhkan penyakit kerabunan tersebut. Oleh karena itu, era ini dikenal dengan era penyembuhan empiris (berdasarkan pengalaman).[7] Christiaan Eijkman, salah satu tokoh penting dalam sejarah penemuan vitamin. Era karakterisasi defisiensi
Perkembangan besar berikutnya mengenai vitamin baru kembali muncul pada tahun 1890-an.[7] Penemuan ini diprakarsai oleh Lunin dan Christiaan Eijkman yang melakukan penelitian mengenai penyakit defisiensi pada hewan. Penemuan inilah yang kemudian memulai era kedua dari lima garis besar sejarah vitamin di dunia.[6] Penelitian mereka terfokus pada pengamatan penyakit akibat defisiensi senyawa tertentu. Beberapa tahun berselang, ilmuwan Sir Frederick G. Hopkins yang sedang melakukan analisis penyakit beri-beri pada hewan menemukan bahwa hal ini disebabkan oleh kekurangan suatu senyawa faktor pertumbuhan (growth factor).[8] Pada tahun 1911, seorang ilmuwan kelahiran Amerika bernama Dr. Casimir Funk berhasil mengisolasi suatu senyawa yang telah dibuktikan dapat mencegah peradangan saraf (neuritis) untuk pertama kalinya.[9] Dr. Casimir juga berhasil mengisolasi senyawa aktif dari sekam beras yang diyakini memiliki aktivitas antiberi-beri pada tahun berikutnya. Pada saat itulah (dan untuk pertama kalinya), Dr Funk mempublikasikan senyawa aktif hasil temuannya tersebut dengan istilah vitamine (vital dan amines). Pemberian nama amines pada senyawa vitamin ini karena diduga semua jenis senyawa aktif ini memiliki gugus amina (amine). Hal tersebut kemudian segera disanggah dan diganti menjadi vitamin (dengan penghilangan akhiran huruf "e") pada tahun 1920.[10]
Masa keemasan
Era ketiga sejarah vitamin terjadi beberapa dekade berikutnya.[7] Pada masa tersebut, terjadi banyak penemuan besar mengenai vitamin itu sendiri, meliputi penemuan vitamin jenis baru, metode penapisan yang diperbahurui, penggambaran struktur lengkap vitamin, dan síntesis vitamin B12. Oleh karena hal tersebutlah, era ketiga dari garis besar sejarah vitamin ini dikenal dengan masa keemasan (golden age).[7] Banyak penelti yang mendapatkan hadiah nobel atas penemuannya di bidang vitamin ini. Sir Walter N. Hawort mendapatkan nobel di bidang kimia atas penemuan vitamin C pada tahun 1937. Hadiah nobel lainnya diperoleh oleh Carl Peter Henrik Dam di bidang Fisiologi - Pengobatan pada tahun 1943 atas penemuan vitamin K.[11] Fritz A Litmann juga turut memenangkan nobel atas dedikasinya dibidang penelitian mengenai penemuan koenzim A dan perannya di dalam metabolisme tubuh.[11] Tadeus Reichstein, seorang ahli kimia yang berhasil memproduksi vitamin C secara massal untuk pertama kalinya dalam sejarah.
Era karakterisasi fungsi dan produksi
Era keempat ditandai dengan banyaknya penemuan mengenai fungsi biokimia vitamin di dalam tubuh, perannya dalam makanan yang kita konsumsi sehari-hari, dan produksi komersial vitamin untuk pertama kalinya dalam sejarah.[7] Pada tahun 1930-an, para peneliti menemukan bahwa vitamin B2 merupakan bagian dari “enzim kuning”. Vitamin B2 ini sendiri diperoleh dari ekstrak ragi.[12] Melalui penelitian ini juga, kelompok vitamin B diketahui berperan sebagai koenzim yang penting di dalam tubuh manusia. Produksi masal vitamin untuk pertama kalinya juga terjadi pada era ini. Dikomersilkan pertama kali oleh Tadeus Reichstein pada tahun 1933, vitamin C telah dijual kepada masyarakat luas dengan harga yang relatif murah sehingga terjangkau bagi khalayak ramai.[13] Vitamin C yang juga dikenal dengan istilah asam askorbat ini kemudian banyak dipakai sebagai suplemen makanan, penelitian, dan gizi tambahan bagi hewan ternak. Atas hasil penemuan ini, Tadeus Reichstein mendapatkan nobel di bidang Fisiologi – Pengobatan pada tahun 1950.[14]
Era penemuan nilai kesehatan vitamin
Hanya dalam waktu 1 dekade berikutnya setelah era vitamin keempat, perkembangan ilmu pengetahuan telah membawa vitamin keera berikutnya, yaitu era kelima dimana banyak ditemukan nilai kesehatan dari masing-masing jenis vitamin dan penemuan baru mengenai fungsi biokimia vitamin bagi tubuh.[7] Masa ini dimulai pada tahun 1955 ketika Rudolf Altschul menemukan bahwa niasin (vitamin B3) dapat menurunkan kadar kolesterol dalam darah.[15] Peranan kesehatan ini terlepas dari efek defisiensi vitamin B3 itu sendiri maupun perannya sebagai koenzim dalam metabolisme tubuh.[16]
Berbagai vitamin
Secara garis besar, vitamin dapat dikelompokkan menjadi 2 kelompok besar, yaitu vitamin yang larut dalam air dan vitamin yang larut dalam lemak. Hanya terdapat 2 vitamin yang larut dalam air, yaitu B dan C, sedangkan vitamin lainnya, yaitu vitamin A, D, E, dan K bersifat larut dalam lemak.[17] Vitamin yang larut dalam lemak akan disimpan di dalam jaringan adiposa (lemak) dan di dalam hati. Vitamin ini kemudian akan dikeluarkan dan diedarkan ke seluruh tubuh saat dibutuhkan. Beberapa jenis vitamin hanya dapat disimpan beberapa hari saja di dalam tubuh, sedangkan jenis vitamin lain dapat bertahan hingga 6 bulan lamanya di dalam tubuh.[17]
Berbeda dengan vitamin yang larut dalam lemak, jenis vitamin larut dalam air hanya dapat disimpan dalam jumlah sedikit dan biasanya akan segera hilang bersama aliran makanan. Saat suatu bahan pangan dicerna oleh tubuh, vitamin yang terlepas akan masuk ke dalam aliran darah dan beredar ke seluruh bagian tubuh. Apabila tidak dibutuhkan, vitamin ini akan segera dibuang tubuh bersama urin.[18] Oleh karena hal inilah, tubuh membutuhkan asupan vitamin larut air secara terus-menerus.
Vitamin A
Vitamin A, yang juga dikenal dengan nama retinol, merupakan vitamin yang berperan dalam pembentukkan indra penglihatan yang baik, terutama di malam hari, dan sebagai salah satu komponen penyusun pigmen mata di retina. Selain itu, vitamin ini juga berperan penting dalam menjaga kesehatan kulit dan imunitas tubuh.[17] Vitamin ini bersifat mudah rusak oleh paparan panas, cahaya matahari, dan udara. Vitamin A banyak ditemukan pada susu, ikan, sayur-sayuran (terutama yang berwarna hijau dan kuning), dan juga buah-buahan (terutama yang berwarna merah dan kuning, seperti cabai merah, wortel, pisang, dan pepaya).[1]
Defisiensi vitamin A dapat menyebabkan rabun senja, katarak, infeksi saluran pernapasan, dan penurunan daya tahan tubuh. Kelebihan vitamin A di dalam tubuh dapat menyebabkan keracunan.[1] Penyakit yang dapat ditimbulkan antara lain pusing-pusing, kerontokan rambut, kulit kering bersisik, dan pingsan.[19] Selain itu, bila sudah dalam kondisi akut, hal ini dapat menyebabkan kerabunan, terhambatnya pertumbuhan tubuh, pembengkakan hati, dan iritasi kulit.[1] Sayur-sayuran hijau dan kacang-kacangan sebagai sumber vitamin A dan vitamin B yang tinggi.
Vitamin B
Secara umum, golongan vitamin B berperan penting dalam metabolisme di dalam tubuh, terutama dalam hal pelepasan energi saat beraktivitas.[18] Hal ini terkait dengan peranannya di dalam tubuh, yaitu sebagai senyawa koenzim yang dapat meningkatkan laju reaksi metabolisme tubuh terhadap berbagai jenis sumber energi. Beberapa jenis vitamin yang tergolong dalam kelompok vitamin B ini juga berperan dalam pembentukan sel darah merah (eritrosit). Sumber utama vitamin B berasal dari susu, gandum, ikan, dan sayur-sayuran hijau.[19]
Vitamin B1
Vitamin B1, yang dikenal juga dengan nama tiamin, merupakan salah satu jenis vitamin yang memiliki peranan penting dalam menjaga kesehatan kulit dan membantu mengkonversi karbohidrat menjadi energi yang diperlukan tubuh untuk rutinitas sehari-hari. Di samping itu, vitamin B1 juga membantu proses metabolisme protein dan lemak. Bila terjadi defisiensi vitamin B1, kulit akan mengalami berbagai gangguan, seperti kulit kering dan bersisik.[17] Tubuh juga dapat mengalami beri-beri, gangguan saluran pencernaan, jantung, dan sistem saraf. Untuk mencegah hal tersebut, kita perlu banyak mengonsumsi banyak gandum, nasi, daging, susu, telur, dan tanaman kacang-kacangan. Bahan makanan inilah yang telah terbukti banyak mengandung vitamin B1.[1]
Vitamin B2
Vitamin B2 (riboflavin) banyak berperan penting dalam metabolisme di tubuh manusia.[1] Di dalam tubuh, vitamin B2 berperan sebagai salah satu kompenen koenzim flavin mononukleotida (flavin mononucleotide, FMN) dan flavin adenine dinukleotida (adenine dinucleotide, FAD). Kedua enzim ini berperan penting dalam regenerasi energi bagi tubuh melalui proses respirasi. Vitamin ini juga berperan dalam pembentukan molekul steroid, sel darah merah, dan glikogen, serta menyokong pertumbuhan berbagai organ tubuh, seperti kulit, rambut, dan kuku.[6] Sumber vitamin B2 banyak ditemukan pada sayur-sayuran segar, kacang kedelai, kuning telur, dan susu. Defisiensinya dapat menyebabkan menurunnya daya tahan tubuh, kulit kering bersisik, mulut kering, bibir pecah-pecah, dan sariawan.
Vitamin B3 Beri-beri, penyakit yang disebabkan oleh defisiensi vitamin B1
Vitamin B3 juga dikenal dengan istilah niasin. Vitamin ini berperan penting dalam metabolisme karbohidrat untuk menghasilkan energi, metabolisme lemak, dan protein.[20] Di dalam tubuh, vitamin B3 memiliki peranan besar dalam menjaga kadar gula darah, tekanan darah tinggi, penyembuhan migrain, dan vertigo. Berbagai jenis senyawa racun dapat dinetralisir dengan bantuan vitamin ini.[20] Vitamin B3 termasuk salah satu jenis vitamin yang banyak ditemukan pada makanan hewani, seperti ragi, hati, ginjal, daging unggas, dan ikan.[17] Akan tetapi, terdapat beberapa sumber pangan lainnya yang juga mengandung vitamin ini dalam kadar tinggi, antara lain gandum dan kentang manis. Kekurangan vitamin ini dapat menyebabkan tubuh mengalami kekejangan, keram otot, gangguan sistem pencernaan, muntah-muntah, dan mual.[19]
Vitamin B5
Vitamin B5 (asam pantotenat) banyak terlibat dalam reaksi enzimatik di dalam tubuh. Hal ini menyebabkan vitamin B5 berperan besar dalam berbagai jenis metabolisme, seperti dalam reaksi pemecahan nutrisi makanan, terutama lemak.[6] Peranan lain vitamin ini adalah menjaga komunikasi yang baik antara sistem saraf pusat dan otak dan memproduksi senyawa asam lemak, sterol, neurotransmiter, dan hormon tubuh. [20] Vitamin B5 dapat ditemukan dalam berbagai jenis variasi makanan hewani, mulai dari daging, susu, ginjal, dan hati hingga makanan nabati, seperti sayuran hijau dan kacang hijau. Seperti halnya vitamin B1 dan B2, defisiensi vitamin B5 dapat menyebabkan kulit pecah-pecah dan bersisik. Selain itu, gangguan lain yang akan diderita adalah keram otot serta kesulitan untuk tidur.[1]
Vitamin B6
Vitamin B6, atau dikenal juga dengan istilah piridoksin, merupakan vitamin yang esensial bagi pertumbuhan tubuh. Vitamin ini berperan sebagai salah satu senyawa koenzim A yang digunakan tubuh untuk menghasilkan energi melalui jalur sintesis asam lemak, seperti spingolipid dan fosfolipid.[20][6] Selain itu, vitamin ini juga berperan dalam metabolisme nutrisi dan memproduksi antibodi sebagai mekanisme pertahanan tubuh terhadap antigen atau senyawa asing yang berbahaya bagi tubuh.[20] Vitamin ini merupakan salah satu jenis vitamin yang mudah didapatkan karena vitamin ini banyak terdapat di dalam beras, jagung, kacang-kacangan, daging, dan ikan. Kekurangan vitamin dalam jumlah banyak dapat menyebabkan kulit pecah-pecah, keram otot, dan insomnia.[19] Vitamin B12
Vitamin B12 atau sianokobalamin merupakan jenis vitamin yang hanya khusus diproduksi oleh hewan dan tidak ditemukan pada tanaman. Oleh karena itu, vegetarian sering kali mengalami gangguan kesehatan tubuh akibat kekurangan vitamin ini.[20] Vitamin ini banyak berperan dalam metabolisme energi di dalam tubuh. Vitamin B12 juga termasuk dalam salah satu jenis vitamin yang berperan dalam pemeliharaan kesehatan sel saraf, pembentukkan molekul DNA dan RNA, pembentukkan platelet darah.[6] Telur, hati, dan daging merupakan sumber makanan yang baik untuk memenuhi kebutuhan vitamin B12. Kekurangan vitamin ini akan menyebabkan anemia (kekurangan darah), mudah lelah lesu, dan iritasi kulit.[1]
Vitamin C Buah jeruk, terkenal atas kandungan vitamin C-nya yang tinggi.
Vitamin C (asam askorbat) banyak memberikan manfaat bagi kesehatan tubuh kita. Di dalam tubuh, vitamin C juga berperan sebagai senyawa pembentuk kolagen yang merupakan protein penting penyusun jaringan kulit, sendi, tulang, dan jaringan penyokong lainnya. [21] Vitamin C merupakan senyawa antioksidan alami yang dapat menangkal berbagai radikal bebas dari polusi di sekitar lingkungan kita. Terkait dengan sifatnya yang mampu menangkal radikal bebas, vitamin C dapat membantu menurunkan laju mutasi dalam tubuh sehingga risiko timbulnya berbagai penyakit degenaratif, seperti kanker, dapat diturunkan.[22] Selain itu, vitamin C berperan dalam menjaga bentuk dan struktur dari berbagai jaringan di dalam tubuh, seperti otot. Vitamin ini juga berperan dalam penutupan luka saat terjadi pendarahan dan memberikan perlindungan lebih dari infeksi mikroorganisme patogen.[21] Melalui mekanisme inilah vitamin C berperan dalam menjaga kebugaran tubuh dan membantu mencegah berbagai jenis penyakit. Defisiensi vitamin C juga dapat menyebabkan gusi berdarah dan nyeri pada persendian. Akumulasi vitamin C yang berlebihan di dalam tubuh dapat menyebabkan batu ginjal, gangguan saluran pencernaan, dan rusaknya sel darah merah.[21]
Vitamin D
Vitamin D juga merupakan salah satu jenis vitamin yang banyak ditemukan pada makanan hewani, antara lain ikan, telur, susu, serta produk olahannya, seperti keju. Bagian tubuh yang paling banyak dipengaruhi oleh vitamin ini adalah tulang. Vitamin D ini dapat membantu metabolisme kalsium dan mineralisasi tulang.[23] Sel kulit akan segera memproduksi vitamin D saat terkena cahaya matahari (sinar ultraviolet). Bila kadar vitamin D rendah maka tubuh akan mengalami pertumbuhan kaki yang tidak normal, dimana betis kaki akan membentuk huruf O dan X.[24] Di samping itu, gigi akan mudah mengalami kerusakan dan otot pun akan mengalami kekejangan.[1] Penyakit lainnya adalah osteomalasia, yaitu hilangnya unsur kalsium dan fosfor secara berlebihan di dalam tulang. Penyakit ini biasanya ditemukan pada remaja, sedangkan pada manula, penyakit yang dapat ditimbulkan adalah osteoporosis, yaitu kerapuhan tulang akibatnya berkurangnya kepadatan tulang. Kelebihan vitamin D dapat menyebabkan tubuh mengalami diare, berkurangnya berat badan, muntah-muntah, dan dehidrasi berlebihan.[17]
Vitamin E
Struktur molekul vitamin E
Vitamin E berperan dalam menjaga kesehatan berbagai jaringan di dalam tubuh, mulai dari jaringan kulit, mata, sel darah merah hingga hati. Selain itu, vitamin ini juga dapat melindungi paru-paru manusia dari polusi udara. Nilai kesehatan ini terkait dengan kerja vitamin E di dalam tubuh sebagai senyawa antioksidan alami. Vitamin E banyak ditemukan pada ikan, ayam, kuning telur, ragi, dan minyak tumbuh-tumbuhan. Walaupun hanya dibutuhkan dalam jumlah sedikit, kekurangan vitamin E dapat menyebabkan gangguan kesehatan yang fatal bagi tubuh, antara lain kemandulan baik bagi pria maupun wanita. Selain itu, saraf dan otot akan mengalami gangguan yang berkepanjangan.[19]
Vitamin K
Vitamin K banyak berperan dalam pembentukan sistem peredaran darah yang baik dan penutupan luka. Defisiensi vitamin ini akan berakibat pada pendarahan di dalam tubuh dan kesulitan pembekuan darah saat terjadi luka atau pendarahan. Selain itu, vitamin K juga berperan sebagai kofaktor enzim untuk mengkatalis reaksi karboksilasi asam amino asam glutamat.[25] Oleh karena itu, kita perlu banyak mengonsumsi susu, kuning telur, dan sayuran segar yang merupakan sumber vitamin K yang baik bagi pemenuhan kebutuhan di dalam tubuh.[17]
Berikut adalah senyawa-senyawa yang tergolong vitamin alami. Tahun penemuan vitamin alami dan sumbernya Tahun penemuan Vitamin Nama biokimia Ditemukan di
1909 Vitamin A Retinol Wortel 1912 Vitamin B1 Tiamin Susu 1912 Vitamin C Asam askorbat Jeruk sitrun 1918 Vitamin D Kalsiferol Keju 1920 Vitamin B2 Riboflavin Telur 1922 Vitamin E Tokoferol Minyak mata bulir gandum, 1926 Vitamin B12 Sianokobalamin Telur 1929 Vitamin K Filokuinona Kuning telur 1931 Vitamin B5 Asam pantotenat Susu 1931 Vitamin B7 Biotin Hati 1934 Vitamin B6 Piridoksin Kacang 1936 Vitamin B3 Niasin Ragi 1941 Vitamin B9 Asam folat Hati
Senyawa serupa vitamin Sel darah merah, terbentuk sempurna oleh kontribusi vitamin B, C, dan E, serta asam para-aminobenzoat
Selain vitamin, tubuh juga memproduksi senyawa lain yang juga berperan dalam kelancaran metabolisme di dalam tubuh. Senyawa ini memiliki karakteristik dan aktivitas yang mirip dengan vitamin sehingga seringkali disebut dengan istilah senyawa serupa vitamin ({{lang-en|vitamin like substances).[26] Perbedaan utamanya dengan vitamin adalah senyawa ini diproduksi tubuh dalam jumlah yang cukup untuk memenuhi kebutuhan sehari-hari. Beberapa senyawa ini pernah diklasifikasikan ke dalam kelompok vitamin B kompleks karena kemiripan fungsi dan sumber makanannya. Akan tetapi, secara umum peranan senyawa serupa vitamin ini tidaklah sepenting vitamin.[27]
Kolina merupakan salah satu senyawa yang termasuk dalam golongan senyawa serupa vitamin. Senyawa ini dapat ditemukan di setiap sel mahluk hidup dan berperan dalam pengaturan sistem saraf yang baik dan beberapa metabolisme sel.[28] Mioinositol (myoinositol) juga termasuk dalam golongan senyawa serupa vitamin yang larut dalam air.[29] Peranannya dalam tubuh secara spesifik belum diketahui. Contoh lain dari senyawa serupa vitamin ini adalah asam para-aminobenzoat (4-aminobenzoic acid, PABA) yang berperan sebagai senyawa antioksidan dan penyusun sel darah merah. Karnitina merupakan senyawa lain yang berperan dalam sistem transportasi asam lemak dan pembentukkan otot tubuh.[28]
Vitamin sebagai antioksidan
Semua jenis kehidupan di bumi memerlukan energi untuk dapat bertahan hidup. Untuk menghasilkan energi ini, makhluk hidup memerlukan bantuan berbagai substansi, salah satunya adalah oksigen. Oksigen terlibat secara langsung dalam metabolisme energi di dalam tubuh. Sebagai produk sampingannya, oksigen dilepaskan dalam bentuk yang tidak stabil. Molekul inilah yang dikenal dengan nama radikal bebas (free radicals).[30] Oksigen yang tidak stabil memiliki elektron bebas yang tidak berpasangan sehingga bersifat reaktif. Kereaktifan oksigen ini sangat berbahaya bagi tubuh karena dapat mengoksidasi dan merusak DNA, protein, karbohidrat, asam lemak, dan membran sel di dalam tubuh. Sumber radikal bebas lainnya adalah asap rokok, polusi lingkungan, dan sinar ultraviolet.[31] Asap rokok, salah satu sumber radikal bebas yang dapat merusak jaringan tubuh, terutama paru-paru.
Tubuh memiliki beberapa mekanisme pertahanan terhadap senyawa radikal bebas ini untuk menetralkan efek negatifnya. Kebanyakan diantaranya adalah senyawa antioksidan alami, seperti enzim superoksida dismutase, katalase, dan glutation peroksidase. Antioksidan sendiri berarti senyawa yang dapat mencegah terjadinya peristiwa oksidasi atau reaksi kimia lain yang melibatkan molekul oksigen (O2).[32] Senyawa lain yang juga dapat berperan sebagai antioksidan adalah glutation, CoQ10, dan gugus tiol pada protein, serta vitamin.[33] Beberapa jenis vitamin telah terbukti memiliki aktivitas antioksidan yang cukup tinggi. Contoh vitamin yang banyak berperan sebagai senyawa antioksidan di dalam tubuh adalah vitamin C dan vitamin E.[6]
Vitamin E dapat membantu melindungi tubuh dari oksidasi senyawa radikal bebas.[33] Vitamin ini juga mampu bekerja dalam kondisi kadar senyawa radikal bebas yang tinggi sehingga mampu dengan efisien dan efektif menekan reaksi perusakan jaringan di dalam tubuh melalui proses oksidasi. Di samping vitamin E, terdapat satu jenis vitamin lagi yang juga memiliki aktivitas antioksidan yang tinggi, yaitu vitamin C. Vitamin ini berinteraksi dengan senyawa radikal bebas di bagian cairan sel. Selain itu, vitamin C juga dapat memulihkan kondisi tubuh akibat adanya reaksi oksidasi dari berbagai senyawa berbahaya.[33]
Bila kadar radikal bebas di dalam tubuh menjadi sangat berlebih dan tidak lagi dapat diantisipasi oleh senyawa antioksidan maka akan timbul berbagai penyakit kronis, seperti kanker, arterosklerosis, penyakit jantung, katarak, alzhemeir, dan rematik.[30] Bagi orang yang memiliki sejarah penyakit kronis tersebut dalam garis keturunannya, dianjurkan untuk mengonsumsi banyak makanan yang mengandung vitamin C dan E sebagai sumber senyawa antioksidan. Selain itu, suplemen makanan juga dapat turut membantu mengatasi masalah tersebut.
Vitamin dan penuaan tubuh Struktur mitokondria, salah satu organel sel penghasil energi bagi tubuh
Penuaan tubuh merupakan hasil akumulasi dari berbagai kerusakan sel dan jaringan yang tidak dapat diperbaiki. Pada keadaan normal, kerusakan pada sel dan jaringan tubuh dapat diperbaiki melalui proses replikasi sel tubuh yang juga dikenal dengan istilah mitosis.[34] Akan tetapi, pada berbagai kasus sel yang rusak tidak lagi dapat diperbaharui, melainkan terus terakumulasi. Hal inilah yang berpotensi menyebabkan penuaan pada tubuh.[33] Senyawa radikal bebas merupakan salah satu agen yang berkontribusi besar dalam peristiwa ini.
Mitokondria merupakan salah satu organel sel yang paling rentan mengalami kerusakan oleh senyawa oksigen reaktif (radikal bebas). Hal ini terkait dengan banyaknya reaksi pelepasan oksigen bebas di dalam organel ini yang merupakan pusat metabolisme energi tubuh.[30] Banyak penelitian telah membuktikan bahwa tingkat kerusakan mitokondria ini berhubungan langsung dengan proses penuaan tubuh atau panjangnya umur suatu makhluk hidup. Selain itu, kerusakan DNA akibat reaksi oksidasi oleh radikal bebas juga turut berperan besar dalam peristiwa ini.[30] Oleh karena itu, tubuh memerlukan suatu senyawa untuk menekan efek perusakan oleh radikal bebas.
Vitamin merupakan satu dari berbagai jenis senyawa yang dapat menghambat reaksi perusakan tubuh best bodybuilding supplements oleh senyawa radikal bebas terkait dengan aktivitas antioksidannya. Asupan vitamin antioksidan yang cukup akan membantu tubuh mengurangi efek penuaan oleh radikal bebas, terutama oleh oksigen bebas yang reaktif.[35] Selain itu, vitamin juga berkontribusi dalam menyokong sistem imun yang baik sehingga risiko terkena berbagai penyakit degeneratif dan penyakit lainnya dapat ditekan, terutama pada manula. Jadi, secara tidak langsung, asupan vitamin yang cukup dan seimbang dapat menciptakan kondisi tubuh yang sehat dan berumur panjang. Lihat pula
Kurkumin
Catatan kaki
^ a b c d e f g h i "Vitamin oleh Bono". Diakses 2010-04-07. ^ a b c "Rahayu ID. Klasifikasi, Fungsi dan Metabolisme Vitamin.". Universitas Pertanian dan Peternakan UMM. ^ a b c d Vitamin. US National Library of Medicine dan National Institue of Health. http://www.nlm.nih.gov/medlineplus/vitamins.html
^ "Siswono. 2003. Mikroskop Avitaminosis". Republika. ^ "Suplemen Vitamin".
^ a b c d e f g h Vitamin Basics. DSM Nutritional Products. http://www.vitamin-basics.com/index.php?id=5 ^ a b c d e f "Lima Era Sejarah Vitamin". Diakses 2010-04-05. ^ "Mary Bellis. 2010. Vitamin, Production Method: The History of Vitamin". ^ Challem Jack. 1997. The Past, Present and Future of Vitamins. http://www.thenutritionreporter.com/history_of_vitamins.html
^ Kimpel PA. 2010. Vitamin: How Much is Too Much??. http://inventors.about.com/gi/dynamic/offsite.htm?site=http://iml.jou.ufl.edu/projects/Spring2000/Kimpel/vitamins.html ^ a b Nobel Foundation 1943. http://nobelprize.org/nobel_prizes/medicine/laureates/1943/dam-bio.html ^ Sullivan K. 2002. Vitamins and Minerals: A Practical Approach to a Health Diet and Safe Supplementation. Harper Collins.
^ Biografi Tadeus Richtein. Cartage. http://www.cartage.org.lb/en/themes/Biographies/MainBiographies/R/Reichstein/1.html
^ The Nobel Foundation 1950. http://nobelprize.org/nobel_prizes/medicine/laureates/1950/reichstein-bio.html. Diakases pada 20 April 2010
^ Muller D, Mehling H, Lips RB, Luft F. 2007. Niacin lowers serum phosphate and increases HDL cholesterol in dialysis patients. Clin J Am Soc Nephrol 2:1249-54 ^ Altschul R, Hoffer A, Stephen JD. 1955. Influence of Nicotinic Acid on Serum Cholesterol in Man. Arch Biochem Biophys 54:558–9
^ a b c d e f g "Godam. 2006. Pengertian dan Definisi Vitamin". Diakses 2010-04-07. ^ a b Nemours. 2010. Vitamin. http://kidshealth.org/kid/stay_healthy/food/vitamin.html#. Diakses pada 10 April 2010
^ a b c d e "Higdon J. 2002. Vitamin". Linus Pauling Institute. Diakses 2010-04-09. ^ a b c d e f Vitamin and Health Supplements Guide. Supplements Store. http://www.vitamins-supplements.org/. Diakses pada 23 April 2010
^ a b c Naidu KA. 2003. Vitamin C in human health and disease is still mistery? An Overview. J Nutr 2:7 ^ Stonehaven. 2008. Vitamin C: A powerful weapon in the prevention of degenerative disease. http://www.preventive-health-guide.com/vitamin-c.html. Diakses pada 20 April 2010 ^ Lappe JM, Gustafson DT, Davies KM, Recker RR, Heaney RP. 2007. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am J Clin Nutr 85(6):1586-91
^ Sharrard. 1976. Knock knees and bow legs. Br Med J 1:826-827 ^ Furie B, Bouchard BA, Furie BC. 1999. Vitamin K-dependent biosynthesis of gamma-carboxyglutamic acid. Blood 93(6):1798-1808.
^ Vitamin Like Substances. http://www.cyber-north.com/vitamins/vitaminlike.html. Diakses pada 10 April 2010 ^ Vitamin Like Substances. http://www.cyber-north.com/vitamins/vitaminlike.html. Diakses pada 10 April 2010 ^ a b McDowell LR. 2008. Vitamins in Animal and Human Nutrition. Ed ke-2. Iowa State University Press: AS. ISBN 978-0-8138-2630-1
^ Onomi S, Katayama T, Sato K. 2000. Effects of dietary myo-inositol related compounds on sucrose-mediated hepatic lipid accumulation in rats. Nutr Research 19(9):1401-09 ^ a b c d "Vitamin Antioksidan". Diakses 2010-04-10. ^ UV Rays, Pollution and Smoking. 2010. http://www.globaltlp.com/?p=256 ^ Antioxidant Vitamins: Benefits Not Yet Proved (editorial) NEJM vol 330 (15) Apr. 14, 1994. p 1080 - 1081 ^ a b c d George R. 2005. The best defense: free radicals from pollution and the sun take a terrible toll on your skin. Go on the offense with topical antioxidants. http://findarticles.com/p/articles/mi_m0NAH/is_5_35/ai_n13654081/
^ Sadava, et al.. 2008. Life:The Science of Biology. Ed ke-8. Sinauer Associates: US ^ "Warner J. 2003. Myth vs. Reality on Anti-Aging Vitamins". Diakses 2010-04-10.

Saturday 21 September 2013

ENZIM

Dalam tubuh makhluk hidup terjadi banyak reaksi. Reaksi dalam tubuh harus berjalan stabil agar metabolisme dalam tubuh terjaga. Suatu reaksi dalam menghasilkan produk membutuhkan enzim. Enzim berfungsi untuk mempercepat jalannya suatu reaksi.Banyak pengaruh yang mempengaruhi kerja enzim, salah satunya adalah inhibitor atau bisa disebut juga sebagai penghambat. Adanya inhibitor ini membuat enzim tidak bisa berfungsi secara baik sehingga dalam suatu reaksi dapat dikatakan gagal karena tidak menghasilkan suatu produk. Inhibitor ini terdiri menjadi 2 yaitu, inhibitor irreversible dan inhibitor reversible. Inhibitor reversible dibagi menjadi 3 yaitu, competitive inhibition, incompetitive inhibition, dan uncompetitive inhibition. Inhibitor ini memiliki strategi yang berbeda dalam menghambat suatu reaksi.
Di alam ada tipe inhibitor yang dapat diatasi dengan penambahan substrat. Namun, beberapa enzim tidak memerlukan komponen tambahan untuk mencapai aktivitas penuhnya. Beberapa memerlukan pula molekul non-protein yang disebut kofaktor untuk berikatan dengan enzim dan menjadi aktif. Kofaktor dapat berupa zat anorganik (contohnya ion logam) atau pun zat organik (contohnya flavin dan heme).
Tumbuhan-tumbuhan hijau sangat berbeda dengan manusia, binatang dan mikroorganisme lainnya yang membutuhkan senyawa organik dariluar. Elemen esensial adalah elemen yang harus ada agar siklus hidup yang normaldari organisme bisa terjadi dan fungsinya tidak bisa diganti oleh senyawa kimialainnya. Tambahan pula unsur-unsur itu harus mencakup nutrisi sebagai bahan pokok untuk proses metabolisme yang diperlukan dalam aktivitas enzim.
Inhibitor
Inhibitor Irreversible
Inhibitor ireversibel membentuk ikatan kovalen dengan fungsi tertentu, biasanya sebuah residu asam amino, yang mungkin, dalam beberapa cara, dikaitkan dengan aktivitas katalitik enzim. Ada banyak contoh inhibitor enzim yang secara kovalen mengikat bukan di sisi aktif, tetapi secara fisik memblok sisi aktif.
Inhibitor tidak bisa dilepaskan dengan pengenceran atau dialysis, kinetik, konsentrasi dan karenanya kecepatan enzim aktif diturunkan secara proporsional dengan konsentrasi inhibitor dan dengan demikian pengaruhnya.
Contoh inhibitor ireversibel termasuk fluorophosphate diisopropil, yang bereaksi dengan protease serin, chymotrypsin dan iodoacetate yang bereaksi dengan kelompok sulfhidril penting dari enzim seperti fosfat dehidrogenase triose:
E-SH+ICH2COO E-SCH2COOH+HI
Inhibitor Reversible
Jenis inhibitor tipe ini melibatkan keseimbangan antara enzim dan inhibitor, konstanta kesetimbangan (Ki) menjadi ukuran afinitas dari inhibitor untuk enzim.
Ada tiga tipe Inhibitor Reversible:
Competitive inhibition, Noncompetitive inhibition Uncompetitive inhibition.
1) Competitive Inhibition Inhibitor kompetitif adalah molekul penghambat yang bersaing dengan substrat untuk mendapatkan sisi aktif enzim.Contohnya, sianida bersaing dengan oksigen untuk mendapatkan hemoglobin dalam rantai respirasi terakhir. Penghambatan inhibitor kompetitif bersifat sementara dan dapat diatasi dengan cara menambah konsentrasi substrat.
Contoh jenis penghambatan kompetitif adalah penghambatan kompetitif dehidrogenase suksinat oleh anion malonat dan oksaloasetat. Dehidrogenase suksinat adalah anggota golongan enzim yang mengkalatisis siklus asam sitrat yang dapat membebaskan 2 atom hidrogen dari suksinat. Dehidrogenase suksinat dihambat oleh malonat yang struktur molekulnya mirip suksinat.
COO- COO- COO- CH2 CH2 C = O CH2 COO- CH2 COO- COO- (Suksinat Substrat) Melanoat Oksaloasetat
Persamaan yang digunakan untuk menghitung kecepatan dari competitive inhibition adalah sebagai berikut
2) Noncompetitive Inhibition Inhibitor nonkompetitif adalah molekul penghambat enzim yang bekerja dengan cara melekatkan diri pada luar sisi aktif enzim. Sehingga, bentuk enzim berubah dan sisi aktif enzimtidak dapat berfungsi.Hal ini menyebabkan substrat tidak dapat masuk ke sisi aktif enzim. Penghambatan inhibitor nonkompetitif bersifat tetap dan tidak dapat dipengaruhi oleh konsentrasi substrat.
Persamaan yang digunakan untuk menghitung kecepatan dari noncompetitive inhibition adalah sebagai berikut
3) Uncompetitive Inhibition
Senyawa yang tergabung hanya dengan kompleks ES tetapi bukan berarti enzim bebas disebut uncompetitive inhibition. Penghambat ini tidak diatasi dengan konsentrasi substrat yang tinggi. Menarik nilai KM secara konsisten lebih kecil dari nilai KM reaksi tanpa penghambat, yang menyatakan bahwa S akan lebih efektif terikat pada enzim dengan adanya inhibitor.
Persamaan yang digunakan untuk menghitung kecepatan dari uncompetitive inhibition adalah sebagai berikut
Kofaktor
Beberapa enzim tidak memerlukan komponen tambahan untuk mencapai aktivitas penuhnya. Namun beberapa memerlukan pula molekul non-protein yang disebut kofaktor untuk berikatan dengan enzim dan menjadi aktif. Kofaktor dapat berupa zat anorganik (contohnya ion logam) ataupun zat organik (contohnya flavin dan heme). Kofaktor dapat berupa gugus prostetik yang mengikat dengan kuat, ataupun koenzim, yang akan melepaskan diri dari tapak aktif enzim semasa reaksi.
Enzim yang memerlukan kofaktor namun tidak terdapat kofaktor yang terikat dengannya disebut sebagai apoenzim ataupun apoprotein. Apoenzim beserta dengan kofaktornya disebut holoenzim (bentuk aktif). Kebanyakan kofaktor tidak terikat secara kovalen dengan enzim, tetapi terikat dengan kuat. Namun, gugus prostetik organik dapat pula terikat secara kovalen (contohnya tiamina pirofosfat pada enzim piruvat dehidrogenase). Istilah holoenzim juga dapat digunakan untuk merujuk pada enzim yang mengandung subunit protein berganda, seperti DNA polimerase. Pada kasus ini, holoenzim adalah kompleks lengkap yang mengandung seluruh subunit yang diperlukan agar menjadi aktif.
Contoh enzim yang mengandung kofaktor adalah karbonat anhidrase, dengan kofaktor seng terikat sebagai bagian dari tapak aktifnya.
Kinetika Enzim
Merupakan bidang biokimia yang terkait dengan pengukuran kuantitatif dari kecepatan reaksi yang dikatalisis enzim dan pemeriksaan sistematik faktor-faktor yangg mempengaruhi kecepatan tersebut. Analisis kinetik memungkinkan para ahli merekonstruksi jumlah dan urutan tahap-tahap individual yang merupakan perubahan substrat oleh enzim menjadi produk. Mempelajari kinetik enzim juga merupakan dasar untuk mengidentifikasi kekuatan pengobatan dari obat tertentu yg secara selektif menghambat kecepatan proses yang dikatalisis oleh enzim. Bersama dengan mutagenesis yang disengaja dan teknik lain yang mengganggu struktur protein, analisis kinetik juga mengungkapkan secara mendalam mekanisme katalitik.
Aktivitas seperangkat enzim yg seimbang dan lengkap merupakan dasar penting untuk mempertahankan homeostasis. Pemahaman tentang kinetik enzim penting untuk memahami bagaimana stress fisiologis seperti anoksia, asidosis atau alkalosis metabolik, toksin dan senyawa farmakologik mempengaruhi keseimbangan tersebut.
Reaksi Kimia Dijelaskan dengan Persamaan Kesetimbangan
Persamaan kesetimbangan di bawah menjelaskan reaksi satu molekul dari masing-masing substrat A dan B untuk membentuk satu molekul dari masing-masing produk P dan Q.
(i). A + B « P + Q
Tanda panah ganda menunjukkan reversible (terbalikan). Jika A dan B dapat membentuk P dan, maka P dan Q juga dapat membentuk A dan B. Dengan demikian penentuan suatu reaktan sebagai “substrat” atau “produk” sedikit banyak bersifat arbitrer karena produk suatu reaksi yang dituliskan dalam satu arah adalah substrat bagi reaksi yang berlawanan. Namun, istilah “produk” sering digunakan untuk menandai reaktan yang pembentukannya menguntungkan secara termodinamis.
(ii). A + B ® P + Q
Tanda panah satu arah menunjukkan irreversible (tidak terbalikan). Digunakan untuk menjelaskan reaksi di dalam sel hidup tempat produk reaksi (ii) segera dikonsumsi oleh reaksi selanjutnya yang dikatalisis oleh enzim. Oleh karena itu, pengeluaran segera produk P atau Q secara efektif meniadakan kemungkinan terjadinya reaksi kebalikan sehingga persamaan (ii) secara fungsional menjadi irreversibel pada kondisi fisiologis. Contohnya adalah ketika kita bernapas.
Perubahan Energi Bebas Menentukan Arah dan Keadaan Seimbang dari Reaksi Kimia
DGo = – RT ln Keq
Keterangan:
DGo­ : perubahan energi bebas Gibbs R : konstanta gas (1,98 kal/mol/K atau 8,31 J/mol/K) T : suhu mutlak dalam derajat Kelvin Keq : konstanta equivalen Keq setara dengan hasil kali konsentrasi produl-produk reaksi, masing-masing dipangkatkan sesuai stoikiometrinya, dibagi hasil kali substrat yang masing-masing dipangkatkan sesuai stoikiometrinya.
Karena DGo adalah fungsi keadaaan awal dan akhir zat-zat yang bereaksi, besaran ini hanya dapat memberikan informasi mengenai arah dan keadaan kesimbangan. DGo­­ ­tidak bergantung pada mekanisme reaksi dan tidak memberikan informasi mengenai laju (kecepatan) reaksi.
Oleh karena itu meskipunn suatu reaksi mungkin memiliki DGo atau DGo yang negatif besar, namun reaksi tersebut tetap berlangsung meskipun dengan kecepatan yang sangat rend
ah. Metabolisme Mineral dalam Tumbuhan Suatu elemen dapat dikatakan sebagai hara essensial jika memenuhi kriteria berikut,
Jika tanaman kekurangan suatu unsur hara , tanaman tersebut tidak dapat menyelesaikan seluruh siklus hidupnya.
Defisiensi dari unsur hara tersebut sangat specifik dan tidak digantikan oleh unsur hara lain.
Elemen tersebut terlibat secara langsung dalam nutrisi tanaman, sebagai contoh terlibat langsung dalam proses metabolisme dan sangat esensial, dan atau juga terlibat dan dibutuhkan untuk proses enzimatik.
Bertolak dari pengertian yang dikemukakan oleh Arnon dan Stout (1939) in http://www.scribd.com/doc/57397217/Nutrisi-Tanaman-Materi, berikut ini adalah beberapa unsur kimia yang diperlukan oleh tumbuhan tingkat tinggi yakni:
Karbon C Potassium K Zink Zn Hidrogen H Calsium Ca Molibdenum Mo Oksigen O Magnesium Mg Boron B Nitrogen N Iron Fe Clorin Cl Posphor P Mangan Mn Sodium Na Sulfur S Cuprum Cu Silikon Si Cobalt Co
Na merupakan unsur dasar untuk tumbuhan tingkat tinggi. Karena itu pada daftar unsur yang diperlukan untuk tanaman tingkat tinggi diberi tanda kurung. Dalam hal ini Na untuk beberapa spesies tanaman, khususnya Chenopodia dan adaptasi spesies terhadap kondisi saling mengambil unsur ini dalam jumlah yang relatif tinggi. Na mempunyai manfaat dan sangat esensial. Hal yang sama juga pada Si, yang dari beberapa penelitian tampak merupakan nutrisi pokok untuk tanaman padi ( Broyer, dkk. 1954) dalam penemuannya yang baru menyatakan bahwa Klorin juga merupakan unsur pokok untuk pertumbuhan tanaman tingkat tinggi. Hal ini sangat diperlukan pada proses fotosintetis ( Arnon,1959). Dari daftar unsur pokok lainnya yang belum terdaftar untuk tumbuhan tingkat tinggi, misalnya saja Vanadium juga merupakan elemen yang sangat penting ( Nicholas, 1961).
Nutrisi tanaman dibagi atas dua yaitu makronutrien dan mikronutrien. Makronutrien dibutuhkan oleh tumbuh-tumbuhan dalam jumlah yang relatif tinggi ketimbang unsur hara mikronutrient. Kandungan unsur hara makro pada jariingan tanaman, seperrti N, 1000 kali lebih besar daripada kandungan unsur hara mikro Zn. Berikut ini adalah klasifikasi dari unsur hara makro yakni : C, H, O, N, P, K, S, Ca, Mg, (Na, Si). Sedangkan yang termasuk unsur-unsur hara mikro adalah : Fe, Mn, Zn, Mo, B, Cu, Cl. Pembagian nutrisi tanaman atas makro dan mikronutrient bersifat relatif dan kadang-kadang dalam kasus-kasus lainnya kandungan makronutrient dan mikronutrient ternyata lebih mudah daripada yang tercantum diatas. Misalnya saja kandungan nutrisi dari Fe atau Mn ternyata hampir sama atau sebanding dengan kandungan unsur hara dari S atau Mg. Kandungan unsur hara mikro sering melampui kebutuhan fisiologisnya. Hal ini juga terjadi pada Mn. Klorida juga dibutuhkan dalam jumlah yang cukup tinggi pada beberapa spesies tanaman yang dibutuhkan pada proses fotosintetis.
Contoh-contoh diatas menunjukkan bahwa adanya kandungan hara tanaman pada organ-organ tanaman seperti daun, batang, buah dan akar tidak mengindikasikan kuantitas yang efektif untuk proses fisiologis dan biokimia. Tanaman dalam situasi tertentu juga mengandung elemen yang sebenarnya bukan elemen yang dibutuhkan tumbuhan. Hal ini bisa merupakan toksik bagi tanaman itu sendiri, misalnya Alumunium (Al), Nikel (Ni), Selenium (Se) dan Florin (F).
Ditinjau dari segi fisiologis, sebetulnya cukup sulit untuk mengklasifikasikan nutrisi tanaman dalam makronutrien dan mikronutrien, apabila dilihat dari konsentrasi jaringan tanaman itu sendiri. Klasifikasi berdasarkan tingkah laku biokimia dan fungsi fisiologis lebih sesuai. Ditinjau dari segi fisiologis nutrisi tanaman dapat dibagi atas empat kelompok.
Kelompok pertama, mencakup unsur-unsur pokok dari bahan organik tanaman yakni : C, H, O, N, dan S. Karbon diperoleh dalam bentuk senyawa CO2 dari atmosfir dan bisa juga dari senyawa HC3dalam larutan tanah. Senyawa ini diasimilasikan oleh karboksilase membentuk gugusan karboksilase baru. Proses asimilisasi C secara simultan juga diikuti oleh proses asimilasi O, jadi tidak hanya C sendiri tetapi juga CO2 atau HCO3. Hidrogen diambil dari air pada larutan tanah atau di bawah kondisi atmosfir yang humid.
Dalam proses fotosintetis H2O direduksi menjadi H (fotolisis). Proses tansfer ini melalui beberapa proses dan menggunakan senyawa organik yang menghasilkan reduksi nikotinamida adenin dinukleotida (NAD +) yang kemudian direduksi menjadi senyawa NADPH. Ini merupakan koenzim yang sangat penting dalam proses reduksi-oksidasi, seperti NADPH dapat ditansfer dalam bentuk H menjadi sejumlah senyawa yang berbeda-beda. Nitrogen diperlukan tanaman dalam bentuk nitrat atau ion amonium dari larutan atau gas N2 dari atmosfir. Proses yang terakhir disebut Fiksasi molekular N2 dan melalui beberapa organisme (Rhizobium, Actinomyces alni) yang bersimbiosis pada tumbuhan tingkat tinggi.
Asimilasi N menjadi NO3- terjadi akibat proses reduksi dan proses persenyawaan. Amonium -N dalam proses asimilasi juga melibatkan proses persenyawaan. Proses Persenyawaan N dari molekul N2 tergantung pada proses awal dari N2 menjadi NH3 yang selanjutnya dimetabolisme oleh proses persenyawaan. Asimilasi sulfat (S) menjadi NO3 -N seperti pada reduksi SO42- menjadi gugus -SH. Sulfur tidak saja diperoleh dari larutan tanah dalam bentuk SO42- tetapi juga diabsorpsi dari SO2 dari atmosfir. Reaksi C,H,O,N,dan S menjadi molekul merupakan proses metabolisme fisiologis yang sangat penting bagi tumbuhan. Hal ini akan diuraikan secara mendalam. Dalam bagian ini hanya disebutkan beberapa unsur pokok dari material organik tumbuhan yang diasimilasi dalam reduksi fisiologis yang kompleks.
Kelompok kedua, adalah gugusan P, B, dan Si serta gugusan lainnya, menunjukkan kesamaan tingkah laku biokimia, semuanya mengabsorbsi anion organik atau zat asam.
Dalam sel tumbuhan unsur-unsur ini dalam bentuk bebas atau diabsorbsi tidak dalam bentuk difusi anion organik. Misalnya absorbsi Ca2+ oleh gugusan pepsin karboksilik. 3. Kelompok ketiga, adalah K, Na, Mg, Mn, Cl. Kelompok ini diambil dari larutan tanah dalam bentuk ion. Dalam sel tanaman ion-ion ini dalam bentuk ion bebas atau dapat diadsorbsi dan menjadi ion tidak bebas yaitu dalam bentuk anion organik, sebagai contoh penyerapan Ca2+ oleh group karboksil dari pektin. Magnesium juga terikat dengan kuat dalam molekul klorofil. Di sini Mg2+ adalah dalam bentuk chelat yang diikat oleh ikatan kovalen maupun ikatan koordinat ( akan diuraikan lebih lanjut pada hal selanjutnya). Dalam hubungannya dengan Mg2+, elemen ini sangat erat dan mirip dengan kriteria pada group keempat: Zn, Fe, Cu,Mo. Elemen ini secara umum berada dalam bentuk chelat dalam tanaman. Pembagian antara group ketiga dan keempat tidak secara jelas dapat dibagi-bagi untuk Mg2+, elemen Mn dan Ca2+ didalam tanaman juga berada dalam bentuk chelat.
Menurut Nurhayati dkk., (1986) in http://www.scribd.com/doc/57397217/Nutrisi-Tanaman-Materi, unsur- unsur yang dibutuhkan tanaman secara umum dibagi kedalam 2 kelompok, yaitu unsur hara makro dan mikro. Menurut Marschner (1986), selain unsur hara makro dan mikro juga terdapat unsur hara yang tidak essensial menurut definisi essensial tetapi dapat menstimulasi pertumbuhan atau dapat juga essensial hanya pada beberapa tanaman atau menjadi essensial pada beberapa kondisi. Marschner menyebut dengan beneficial element. Sebagai contoh adalah Na, Si, Co, Ni, Se, Al.
DAFTAR PUSTAKA
http://robisevilla.blogspot.com/2013/04/biokimia-tanaman.html
http://blog.ub.ac.id/firdausauliya/category/biokimia-tanaman/
http://www.scribd.com/doc/57397217/Nutrisi-Tanaman-Materi
http://www.dokteranak.net/pdf/metabolisme-mineral.html
http://ulilmoucil.blogspot.com/2012/04/mekanisme-penyerapan-air-dan-mineral.html

Friday 20 September 2013

SILABUS BIOKIMIA

Kuliah biokimia akan meliputi
1. Pengertian dan lingkup biokimia, biomolekul, dan sel hidup;
2. Karbohirat meliputi Monosakarida, disakarida, oligosakarida, dan polisakarida beserta contoh-contohnya. Ikatan glikosida, fungsi karbohidrat, analisa karbohidrat.
3. Protein meliputi Asam amino, ikatan peptida, struktur protein, fungsi protein, analisa protein.
4. Lipid meliputi struktur umum lipid, jenis-jenis asam lemak, penggolongan dan fungsi lipid, analisa lipid.
5. Asam nukleat meluputi Struktur asam nukleat, DNA, RNA, fungsi asam nukleat, analisis DNA.
6. Enzim meliputi peran enzim dalam metabolisme, tata nama enzim, aktivitas, Uji aktivitas, Km, dan Vmax.
7. Metabolisme meluputi gambaran umum tentang metabolisme, penyusunan maupun penguraian zat
8. Fotosintesis dan biosintesis karbohidrat
9. Rantai dan prinsip biosintesis asam nukleat
10. Aplikasi biokimia dalam pertanian
Tugas:
1. Tugas individu... makalah dan paparan
2. Tugas Kelompok... makalah dan paparan
Ujian : harian, tengah dan semester.
BUKU REFERENSI
Poedjiadi, A, Supriyanti, F.M.T, 2007, Dasar-Dasar Biokimia, Jakarta: UI Press.
Lehninger, A.L., 1993, Principles of Biochemistry, 2nd ed., Worth
Murray, R.K., Harper’s Biochemistry, 1996, 24th ed.,Appleton an Lange
Ilyas, N dan Rahim, S.E. 1984. Diktat Biokimia. Fakultas Pertanian Unsri.